ABSTRACT
Abbas ME, Luo W, Zhu L, Zou J, Tang H. Fluorometric determination of hydrogen peroxide in milk by using a Fenton reaction system. Food Chemistry. 2010; 120 (1):327–31. https://doi.org/10.1016/j.foodchem.2009.10.024.
Abrantes MR, da SilvaCampêlo C, da SilvaJBA. Fraudeemleite: métodos de detecção e implicações para o consumidor.Revista do Instituto Adolfo Lutz. 2014; 73(3): 244–51. https://doi. org/10.18241/0073-98552014731611.
Acunha T, Ibáñez C, García‐Cañas V, Simó C, Cifuentes, A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis. 2016; 37(1): 111-41.
Alanazi AZ, Alhazzani K, Mostafa AM, Barker J, Ibrahim H, El-Wekil MM, Ali AMBH. A novel urease-assisted ratiometric fluorescence sensing platform based on pH-modulated copper-quenched near-infrared carbon dots and methyl red-quenched red carbon dots for selective urea monitoring. Microchimica Acta. 2024; 191(8): 505.
Azad T, Ahmed S. Common milk adulteration and their detection techniques. International Journal of Food Contamination. 2016; 3: 22. https://doi.org/10.1186/s40550-016-0045-3.
Bonilla JC, Bozkurt F, Ansari S, Sozer N, Kokini JL. Applications of Quantum Dots in food science and biology. Trends in Food Science and Technology. 2016; 53:75-89.
Chafer-Pericas C, Maquieira A, Puchades A, Miralles J, Moreno A. Multiresidue determination of antibiotics in feed and fish samples for food safety evaluation. Comparison of immunoassay vs LC-MS-MS. Food Control. 2011; 22(6):993–9.
Chi SX, Liu BH, Zhang B, Wang BR, Zhou J, LiL, Mu ZS. Development of an ELISA method to determine adulterated cow milk in camel milk. International Dairy Journal. 2024;155:105953.
Choudhary S, Joshi B, Joshi A. Translation of carbon dot biosensors into an embedded optical setup for spoilage and adulteration detection. ACS Food Science and Technology. 2021; 1(6):1068-76.
Clare DA, Catignani GL, Swaisgood HE. Biodefense properties of milk: the role of antimicrobial proteins and peptides. Current Pharmaceutical Design. 2003;9(16):1239–55. https://doi.org/10.2174/1381612033454874.
Dai H, Shi Y, Wang Y, Sun Y, Hu J, Ni P, Li Z. A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer. Sensors and Actuators B: Chemical. 2014; 202: 201-8.
de la Fuente MA, Juarez M. Authenticity assessment of dairy products. Critical Reviews in Food Science and Nutrition. 2005; 45(7-8): 563–85. https://doi.org/10.1080/10408690490478127.
Demirhan BE, Demirhan B, Kara HES. Room-temperature phosphorescence determination of melamine in dairy products using l-cysteine-capped Mn-doped zinc sulfide (ZnS) quantum dots. Journal of Dairy Science. 2015; 98(5): 2992-3000.
Deng L, Li A, Gao Y, Shen T, Yue H, Miao J, Li R, Yang J. Detection of the bovine milk adulterated in camel, horse, and goat milk using duplex PCR. Food Analytical Methods. 2020; 13: 560-7.
Fathima Anjila PK, Tharani GR, Sundaramoorthy A, Shanmugam VK, Subramani K, Chinnathambi S, Pandian GN, Raghavan V, Grace AN, Ganesan S, Rajendiran M. An ultra-sensitive detection of Melamine in milk using Rare-earth doped Graphene Quantum Dots-Synthesis and Optical Spectroscopic approach. Microchemical Journal. 2024; 196: 109670.
Guo M, Bi M, Zhang F, Ye X, Ma P, Gao D, Song D. A dual-response ratiometric fluorescent sensor for oxytetracycline determination in milk and mutton samples. Talanta. 2024; 277:126382.
Huahua Z, Ruiyi L, Zaijun L. Excitation-depended fluorescence emission of boron-doped graphene quantum dot as an optical probe for detection of oxytetracycline in food and information encryption patterns, Microchimica Acta. 2023; 190(7): 278.
Huang CP, Li YK, Chen TM. A Highly Sensitive System for Urea Detection by Using CQDse/Zns Core-Shell Quantum Dots. Biosensors and Bioelectronics. 2007; 22(8):1835−8.
Hui J, Ruiyi L, Zhenzhong D, Xiaoyan G, Junshan X, Jinsong S, Zaijun L. Platinum nanoparticle-graphene quantum dot nanocage as a promising Schottkyheterojunctionelectrocatalyst for electrochemical detection of vanillin in baby milk powder. Microchemical Journal. 2023; 186:108320.
HuX, Shi J, Shi Y, Zou X, Arslan M, Zhang W, Huang X, Li Z, Xu Y. Use of a smartphone for visual detection of melamine in milk based on Au@Carbon quantum dots nanocomposites. Food Chemistry. 2019; 272: 58–65. https://doi.org/10.1016/j.foodchem.2018.08.021
Joolaei Ahranjani P, Dehghan K, Esfandiari Z, Joolaei Ahranjani P. A Systematic Review of Spectroscopic Techniques for Detecting Milk Adulteration. Critical Reviews in Analytical Chemistry. 2025; 10: 1-32.
Juven BJ, Pierson MD. Antibacterial effects of hydrogen peroxide and methods for its detection and quantitation, Journal of Food Protection. 1996; 59: 1233–41. https://doi.org/ 10.4315/0362-028X-59.11.1233.
Kamthania M, Saxena J, Saxena K, Sharma DK. Milk Adulteration: Methods of Detection &Remedial Measures. International Journal of Engineering and Technical Research. 2014; 1: 15-20.
Kim CH, Lee LP, Min JR, Lim MW, Jeong SH. An indirect competitive assay-based aptasensor for detection of oxytetracycline in milk. Biosensors and Bioelectronics. 2014; 51: 426–30.
Kokkinos C, Angelopoulou M, Economou A, Prodromidis M, Florou A, Haasnoot W, Kakabakos S. Lab-on-a-membrane foldable devices for duplex drop-volume electrochemical biosensing using quantum dot tags. Analytical Chemistry. 2016; 88(13): 6897-904.
Kouhi I, Parvizi FardG, Alipour E, Saadatirad A.Development of an electrochemical sensor for determination of vanillin in some food stuffs. Journal of Food Processing and Preservation. 2022; 46(2): e16289.
Li C, Li J,Liang A, Wen G, Jiang Z. Aptamer turn-on SERS/RRS/fluorescence tri-mode platform for ultra-trace urea determination using Fe/N-doped carbondots, Frontiers in Chemistry. 2021; 9: 613083. https://doi.org/10.3389/fchem. 2021.613083.
Li C, Zhu L, Yang W, HeX, Zhao S, Zhang X, Tang W, Wang J, Yue T, Li Z. Amino-functionalized Al-MOF for fluorescent detection of tetracyclines in milk. Journal of Agricultural and Food Chemistry. 2019; 67(4): 1277–83.
Li L, Wu G, Hong T, Yin Z, Sun D, Abdel-Halim ES, Zhu JJ. Graphene quantum dots as fluorescence probes for turn-off sensing of melamine in the presence of Hg2+, ACS Applied Materials and Interfaces. 2014; 6(4): 2858–64. https://doi.org/10.1021/am405305r.
Livas D, Trachioti M, Banou S, Angelopoulou M, Economou A, Prodromidis M, Petrou P, Kakabakos S, Kokkinos, C. 3D printed microcell featuring a disposable nanocompositeSb/Snimmunosensor for quantum dot-based electrochemical determination of adulteration of ewe/goat’s cheese with cow’s milk. Sensors and Actuators B: Chemical. 2021; 334: 129614.
Ma P, Liang F, Sun Y, Jin Y, Chen Y, Wang X, Zhang H, Gao D, Song D. Rapid determination of melamine in milk and milk powder by surface-enhanced Raman spectroscopy and using cyclodextrin-decorated silver nanoparticles. Microchimica Acta. 2013; 180 :1173-80.https://doi.org/10.1007/s00604-013-1059-7.
Mostafapour S, Gharaghani FM, Hemmateenejad B. Converting electronic nose into opto-electronic nose by mixing MoS2 quantum dots with organic reagents : application to recognition of aldehydes and ketones and determination of formaldehyde in milk. Analytica Chimica Acta. 2021; 1170: 338654. https://doi.org/10.1016/j.aca.2021.338654.
Murugesan P, Libiya N, Moses JA, Anandharamakrishnan C. Fluorescence resonance energy transfer-based sensor with silver-conjugated orange peel waste-derived carbon dots for melamine detection. Carbon Letters. 2023; 33(7): 2335-48.
Nagraik R, Sharma A, Kumar D, Chawla P, Kumar AP. Milk adulterant detection: Conventional and biosensor-based approaches. Sensing and Bio-Sensing Research. 2021; 33: 100433.
Nascimento CF, Santos PM, Pereira-Filho ER, Rocha FRP. Recent advances on determination of milk adulterants. Food Chemistry. 2017; 221: 1232-44.
Padilha JDS, Pedrozo-Peñafiel MJ, Azevedo MF, De Falco A, Larrudé DR, da Costa MEM, Aucélio RQ. Silver-modified nitrogen-doped graphene quantum dots as a sensor for formaldehyde in milk using headspace micro-extraction on a single-drop of aqueous nanoparticles dispersion. Analytica Chimica Acta. 2022; 1232: 340479.
Pang, S. A pH Sensitive Fluorescent Carbon Dots for urea and urease detection. fullerenes, nanotubes and carbon nanostructures. 2020; 28(9): 752−60.
Pérez-López B, Merkoci A. Nanomaterials based biosensors for food analysis applications. Trends Food Science and Technology. 2011; 2: 625-39.
Poonia A, Jha A, Sharma R, Singh HB, RaiAK, Sharma N. Detection of adulteration in milk: A review. International Journal of Dairy Technology. 2016; 70(1): 23-42.
Sa-Nguanprang S, Phuruangrat A, Bunkoed O. An optosensor based on a hybrid sensing probe of mesoporous carbon and quantum dots embedded in imprinted polymer for ultrasensitive detection of thiamphenicol in milk. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2022; 264:120324.
Shalileh F, Sabahi H, Dadmehr M, Hosseini M. Sensing approaches toward detection of urea adulteration in milk. Microchemical Journal. 2023; 193: 08990.
Shi X, Wei W, Fu Z, Gao W, Zhang C, ZhaoQ, Deng F, Lu X. Review on carbon dots in food safety applications. Talanta. 2019; 194: 809-21.
Srivastava AK, Dev A, Karmakar S. Nanosensors and nanobiosensors in food and agriculture. Environmental Chemistry Letters. 2017; 16: 161-82.
Su P, Yu L,Ai Y, Zhang S, Ge H, Bu Y, Huang D, Wang X, Wang S. Conformational fixation induced fluorescence turn-on of oxytetracycline coordinated on aluminum-based metal-organic frameworks for ultrasensitive sensing application. Sensors and Actuators B: Chemical. 2022; 368: 132043.
Tudor Kalit M, Marković K, Kalit S, Vahčić N, Havranek J. Application of electronic nose and electronic tongue in the dairy industry. Mljekarstvo: časopiszaunaprjeđenjeproizvodnje i prerademlijeka. 2014; 64(4): 228-44.
Üzek R, Sari E, Denizli A. Detection of melamine by using fluorescent nanocomposites with specific recognition sites, chemistry select. 2021; 6(9): 2149–55. https://doi.org/10.1002/slct.202100130.
Valdes MG, ValdesGonzalez AC, Garcia Calzon JA, Diaz-Garcia ME. Analytical nanotechnology for food analysis. Microchimica Acta. 2009; 166: 1-19.
Wang Y, Ni P, Jiang S, Lu W, Li Z, Liu H, Li Z. Highly sensitive fluorometric determination of oxytetracycline based on carbon dots and Fe3O4 MNPs. Sensors and Actuators B: Chemical. 2018; 254: 1118-24.
Wang Y, Ni Y. Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-trinitrophenol detection.Analytical Chemistry. 2014; 86(15): 7463–70.
Wei Y, Li L, Ma C, Wu Y, Zhu C, Gao H,Gu J, Xiong Y, Li X, Wang Z, Chen, G. Phenolic hydroxyl group–carbon dots as a fluorescent probe for the detection of hydrogen peroxide and glucose in milk. Journal of Applied Spectroscopy. 2022; 89(2): 272-80.
Xiao-Yue YU, Zi-Jun ZH, Yong-Mei WU, Yan LI, Jin-Cai LI, Yan-Hong BA, Jian-Long WA. Application Progress of Fluorescent Carbon Quantum Dots in Food Analysis. Chinese Journal of Analytical Chemistry. 2020; 48(10): 1288–95.
Xue G, Zhiying M, Xiuying L, Lijun T, Jianrong L. A Fluorescence Resonance Energy Transfer Biosensor Based on Graphene Quantum Dots and Protoporphyrin IX for the Detection of Melamine, Journal of Fluorescence.2020; 30: 1463–8, https://doi.org/10.1007/s10895-020-02524-z.
Yan Y, Liu Y, Yang J, Zhang J. A cathodic “signal-off” photoelectrochemicalaptasensor for ultrasensitive and selective detection of oxytetracycline. Analytical Chemistry. 2015; 87(24): 12215–20.
Yin W, Zhang Y, Gu J, Wang T, Ma C, Zhu C, Li L, Yang Z, Zhu T and ChenG. Urea detection in milk by urease-assisted pH-sensitive carbon dots. Applied Optics. 2021;60(33): 10421-8.
Zhao A, Chen Z, Zhao C, Gao N, Ren J,Qu X. Recent advances in bioapplications of C-dots. Carbon. 2015; 85: 309–27. https://doi.org/10.1016/j.carbon.2014.12.045.
Zhou N, Ma Y, Hu B, He L, Wang S, Zhang Z,Lu S. Construction of Ce-MOF@COF hybrid nanostructure: Label-free aptasensor for the ultrasensitive detection of oxytetracycline residues in aqueous solution environments. Biosensors and Bioelectronics. 2019; 127: 92–100.