ABSTRACT
Anderson MA, Whitlock JE, Harwood VJ. Diversity and distribution of Escherichia coli genotypes and antibiotic resistance phenotypes in faeces of humans, cattle, and horses. Applied and Environmental Microbiology. 2006; 72: 6914 – 22.
Bager F, Madsen M, Christensen J, Aarestrup FM. Avoparcin used as a growth promoter is associated with the occurrence of vancomycin-resistant Enterococcus faecium on Danish poultry and pig farms. Preventive Veterinary Medicine.1997; 31(1): 95–112.
Collignon P, Beggs JJ, Walsh TR, Gandra S, Laxminarayan R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planetary Health. 2018; 2(9): 398–405.
Collignon PJ, McEwen SA. One Health-Its importance in helping to better control antimicrobial resistance. Tropical Medicine and Infectious Disease. 2019; 4(1): 22.
Cui M, Zhang P, Li J, Sun C, Song L, Zhang C, Zhao Q, Wu C. Prevalence, and characterization of fluoroquinolone-resistant Salmonella isolated from an integrated broiler chicken supply chain. Frontiers in Microbiology. 2019;10(1865): 1–8.
Davies J, Davies D. Origins, and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews. 2010; 74: 417–33. doi:10.1128/MMBR.00016-10.
European Medicines Agency. European Surveillance of Veterinary Antimicrobial Consumption. ‘Sales of veterinary antimicrobial agents in 31 European countries in 2017. 2019; (EMA/294674/2019)
Falagas ME, Kasiakou SK. Toxicity of polymyxins: A systematic review of the evidence from old and recent studies. Critical Care. 2006; 10(1): 1–13.
FAO, UNEP, WHO, WOAH. One health joint plan of action (2022-2026). working together for the health of humans, animals, plants, and the environment (Rome: Food and Agriculture Organization of the United Nations, United Nations Environment Programme, World Health Organization, World Organisation for Animal Health). 2022.
Food and Agriculture Organization (FAO). Drivers, dynamics, and epidemiology of antimicrobial resistance in animal or production. 2016; http://www.fao.org/3/a-i6209e.pdf.
Food and Agriculture Organization (FAO). Antimicrobial resistance and foods of plant origin summary report of an FAO meeting of experts FAO antimicrobial resistance working group. 2018; www.fao.org/antimicrobial-resistance.
Food and Drug Administration (FDA). Summary report on antimicrobials sold or distributed for use in food-producing animals. FDA, Department of Health, and Human Services. Washington, DC. 2018.
Gibbons JF, Boland F, Egan J, Fanning S, Markey BK, Leonard FC. Antimicrobial resistance of faecal Escherichia coli isolates from pig farms with different durations of in-feed antimicrobial use. Zoonoses and Public Health. 2016; 63(3): 241–50.
Hassoun A, Linden KP, Friedman B. Incidence, prevalence, and management of MRSA bacteraemia across patient populations – areview of recent developments in MRSA management and treatment. Critical Care. 2017; 21(1): 1–10.
Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin PJ, Piddock LJ. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016; 387: 176–87. doi:10.1016/S0140-6736(15)00473-0.
Hooper DC, Jacoby GA. Mechanisms of drug resistance: quinolone resistance. Annals of the New York Academy of Sciences. 2015; 1354(1): 12–31.
Jans C, Sarno E, Collineau L, Meile L, Stärk KDC, and Stephan R. Consumer exposure to antimicrobial-resistant bacteria from food at Swiss retail level. Frontiers in Microbiology. 2018; 6(9): 362.
Karanika S, Karantanos T, Arvanitis M, Grigoras C, and Mylonakis E. Faecal colonization with extended-spectrum β-lactamase-producing Enterobacteriaceae and risk factors among healthy individuals: a systematic review and meta-analysis. Clinical Infectious Diseases. 2016; 63: 310–18. doi:10.1093/cid/ciw283.
Kinross P, Petersen A, Skov R, van Hauwermeiren E, Pantosti A, Laurent F, Voss A, Kluytmans J, Struelens M.J, Heuer O, Monnet DL. Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) among human MRSA isolates, European Union/European Economic Area countries, 2013. Eurosurveillance. 2017; 22(44): 1–13.
Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens, H. Antibiotic resistance—The need for global solutions. Lancet Infectious Diseaes. 2013; 13: 1057–98.
Liu YY, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infectious Diseases. 2016.
Madec JY, Haenni M, Nordmann P, Poirel L. Extended-spectrum b-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: a threat for humans? Clinical Microbiologyand Infection. 2017; 23(11): 826–33.
Manna SK, Brahmane MP, Manna C, Batabyal K, Das R. Occurrence, virulence characteristics and antimicrobial resistance of Escherichia coli O157 in slaughtered cattle and diarrhoeic calves in West Bengal, India. Letters in Applied Microbiology. 2006; 43: 405–9.
Marston HD, Dixon DM, Knisely JM, Palmore TN, Fauci AS. Antimicrobial resistance. Journal of the American Medical Association. 316: 1193–204. https://doi.org/10.1001/jama.2016.11764
McCann CMB, Christgen JA, Roberts JQ, Su KE, Arnold ND, Gray YG, Zhu, Graham DW. Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. Environment International. 2019; 125: 497–504.
Mughini-Gras L, Dorado-García A, van Duijkeren E, van den Bunt G, Dierikx CM, Bonten MJM, Bootsma MCJ, Schmitt H, Hald T, Evers EG, de Koeijer A, van Pelt W, Franz E, Mevius DJ, Heederik DJJ. Attributable sources of community-acquired carriage of Escherichia coli containing beta-lactam antibiotic resistance genes: a population-based modeling study. Lancet Planetary Health. 2019; 3(8): 357–69.
Nelson JM, Chiller TM, Powers JH, Angulo FJ. Fluoroquinolone resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story. Clinical Infectious Diseases. 2007; 44(7): 977–80.
O’Neill J. Tackling drug-resistant infections globally: Final report and recommendations. Review on Antimicrobial Resistance. 2016; 10–84.
Pfeifer Y, Cullik A, and Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. International Journal of Medical Microbiology. 2010; 300: 371–9. doi: 10.1016/j.ijmm.2010.04.005.
Rizzo K, Horwich-Scholefield S, Epson E. Carbapenem and cephalosporin resistance among Enterobacteriaceae in healthcare-associated infections, California, USA. Emerging Infectious Diseases. 2019; 25: 1389–93. doi: 10.3201/eid2507.181938.
Saraiva M, Filho A, Neto O, Silva NMV, Givisiez PEN, Gebreyes WA, Oliveira CJB. Off-label use of ceftiofur in one-day chicks triggers a short-term increase of ESBL-producing E. coli in the gut. PLoS ONE. 2018; 13(9): 1–9.
Skariyachan S, Mahajanakatti AB, Grandhi NJ, Prasanna A, Sen B, Sharma N, Vasist KS, Narayanappa R. Environmental monitoring of bacterial contamination and antibiotic resistance patterns of the faecal coliforms isolated from Cauvery River, a major drinking water source in Karnataka, India. Environmental Monitoring and Assessment. 2015; 187(5): 279. doi: 10.1007/s10661-015-4488-4. Epub 2015 Apr 21. PMID: 25896199.
Sundin GW, Wang N. Antibiotic resistance in plant-pathogenic bacteria. Annual Review on Phytopathology. 2018; 56(1): 161–80.
Temkin E, Fallach N, Almagor J, Gladstone BP, Taconelli E, and Carmeli Y. Estimating the number of infections caused by antibiotic-resistant Escherichia coli and Klebsiella pneumoniae in 2014: a modelling study. Lancet Global Health. 2018; 6(9): 969–79.
Uzodi AS, Lohse CM, Banerjee R. Risk factors for and outcomes of multidrug-resistant Escherichia coli infections in children. Infectious Diseases and Therapy. 2017; 6(2): 245–57.
Wang R, van Dorp L, Shaw LP, Bradley P, Wang Q, Wang X, Jin L, Zhang Q, Liu Y, Rieux A, Dorai-Schneiders T, Weinert LA, Iqbal Z, Didelot X, Wang H, Balloux F. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nature Communications. 2018; 9(1): 1179.
Watts JE, Schreier HJ, Lanska L, Hale MS. The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Marine Drugs. 2017; 15(6): 158.
Wi YM, Choi JY, Lee JY, Kang CI, Chung DR, Peck KR, Song JH, and Ko KS. Emergence of colistin resistance in Pseudomonas aeruginosa ST235 clone in South Korea. International Journal of Antimicrobial Agents. 2017; 49(6): 767–9.
World Health Organization (WHO). Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline, including tuberculosis. Geneva, Switzerland: WHO; 2017
World Health Organization. Antimicrobial Resistance:Global Report on Surveillance. 2014. [Retrieved on 13-03-2022].WHO, https://apps.who.int/ iris/handle/ 10665/112642.
World Health Organization. Global action plan on antimicrobial resistance. Geneva: WHO; 2015. [Retrieved on 13-03-2022]. Available at: http://www.who.int/antimicrobial-resistance/publi cations/globalaction-plan/en.
World Health Organization. Integrated surveillance of antimicrobial resistance in foodborne bacteria. Geneva: WHO; 2017. (Retrieved on 13-03-2022).
Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. Characterization of a new metallo-b-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrobial Agents and Chemotherapy. 2009; 53: 5046–54.