

Comparative Evaluation of Modified ZN Staining and Sandwich ELISA Based Detection of *Cryptosporidium* spp. Isolated from Cattle and Buffalo Calves in and around Kolkata

Shambo Chowdhury ⁽¹⁾, Rahul Barua ^{(2)*}, Chanchal Debnath ⁽²⁾, Ripan Biswas ⁽²⁾, Surajit Baidya ⁽³⁾, Rahul Bhanja ⁽³⁾, Shubhamitra Chaudhuri ⁽⁴⁾, Kunal Batabyal ⁽⁵⁾, Saktipada Pradhan ⁽⁶⁾, Atul Raj ⁽¹⁾, Tapan Kumar Dutta ⁽⁷⁾

⁽¹⁾Department of Microbiology, All India Institute of Hygiene and Public Health, Kolkata – 700073; ⁽²⁾Department of Veterinary Public Health and Epidemiology, ⁽³⁾Department of Veterinary Parasitology, ⁽⁴⁾Department of Veterinary Clinical Complex, ⁽⁵⁾Department of Veterinary Microbiology, ⁽⁶⁾Department of Veterinary Pathology, WBVAFS, Kolkata – 700 037; ⁽⁷⁾Department of Veterinary Microbiology, C.V.Sc. & AH, CAU, Aizwal, Mizoram - 796 014.

(Received: 11th July 2025 | Accepted: 10th December 2025)

Abstract

Apicomplexan protozoa *Cryptosporidium* species are responsible for significant gastrointestinal disease in humans and animals around the globe. Accuracy in the early diagnosis of cryptosporidiosis is crucial for managing the disease effectively and preventing its transmission. The study aimed to compare two methods for diagnosing *Cryptosporidium* in clinical samples: the modified Ziehl-Neelsen staining technique and the Sandwich Enzyme Linked Immunosorbent Assay. A total of 268 faecal samples from cattle and buffalo calves aged less than 3 months, showing symptoms of diarrhoea, were collected and examined. The faecal samples were processed initially by the modified Ziehl-Neelsen staining technique followed by Sandwich ELISA (Bio-X Diagnostics, SA) as per the manufacturer's protocol. The modified Ziehl- Neelsen technique and Sandwich ELISA exhibited 13 (4.85%) and 48 (17.91%) numbers of positive samples, respectively, among 268 samples. The outcome of this study displays the enhanced sensitivity of the sandwich ELISA method in detecting cryptosporidiosis compared to the modified Ziehl- Neelsen technique.

Keywords: *Cryptosporidium* spp., Cattle and buffalo calves, Modified ZN staining, Sandwich ELISA

Introduction:

Many species of *Cryptosporidium*, which are notable apicomplexan protozoan parasites, induce severe gastrointestinal disease in vertebrates and humans (Abeywardena et al., 2015). Cryptosporidiosis has emerged as the known cause of waterborne outbreaks of gastroenteritis, even in disinfected water resources (CDC, 2025). This is because the *Cryptosporidium* oocyst can resist chlorination and can survive for a prolonged period in the environment (Mittal et al., 2014). A total of 26 *Cryptosporidium* species, along with more than 70 genotypes, have been identified (Qi et al., 2015). *C. parvum*, *C. andersoni*, and *C. bovis* have been identified as the most significant species affecting bovines (Mirhashemi et al., 2015). The *C. parvum* species presents a notable obstacle for profitable livestock farming and creates challenges for public health professionals (Kaupke and Rzezutka, 2015; Galuppi et al., 2016). This protozoan parasite was first discovered by Edward Ernest Tyzzer in 1907 in the small intestine of mice (Tyzzer, 1907), and the first human cryptosporidiosis was identified in 1976 (Nime et al., 1976; Meisel et al., 1976). Cryptosporidiosis in the bovine has been reported from different parts of the world with a 100% infection rate in some herds (Olson et al., 2004; Ayinmode and Fagbemi, 2010). The first recorded detection of *Cryptosporidium* oocysts in India occurred in

Uttar Pradesh, utilising faecal samples obtained from buffaloes and zebu cattle (Dubey et al., 1992). Instances of cryptosporidiosis have been documented in Puducherry (Kumar et al., 2004), West Bengal (Roy et al., 2006), Karnataka (Rekha et al., 2016), and Punjab (Bhat et al., 2013).

In zoonotic cryptosporidiosis, cattle (neonatal calves) play as an important source of dissemination of infection (Preiser et al., 2003; Smith et al., 2004; Chalmers et al., 2005; Kiang et al., 2006; Xiao and Feng, 2008). The principal mode of transmission for the illness is the consumption of sporulated oocysts through contaminated feed and water (Amer et al., 2013). Infected or carrier animals can discharge significant amounts of oocysts (Romero-Salas et al., 2016), hence serving as a potential source of infection for susceptible populations. Clinical signs, including yellow-coloured, sometimes bloodtinged, profuse watery diarrhoea, are observed prominently (Fayer and Ungar, 1986).

The modified Ziehl-Neelsen staining technique is considered to be the 'gold standard' for the detection of *Cryptosporidium* spp. (OIE, 2008), whereas the indirect fluorescent antibody test (IFAT) and enzyme-linked immunosorbent assay (ELISA) are also useful diagnostic tools (Cho et al., 2012; Mirhashemi et al., 2015).

Molecular methods like PCR can even diagnose as low as 1-2 oocyst(s) per sample (Hawash et al., 2015).

This study aims to assess the modified Ziehl-Neelsen (mZN) staining technique and coproantigen-based sandwich ELISA for the rapid detection of *Cryptosporidium* spp. These two methods were compared to assess the diagnostic sensitivity for their simplicity, reliability, and widespread applicability.

Materials and Methods:

Collection of faecal samples

A total of 268 diarrhoeic faecal samples were collected from 217 cattle calves and 51 buffalo calves, respectively, from November 2022 to May 2023. The faecal samples were collected directly from the rectum. After collection, the samples were divided into two parts and kept in sterile labelled Ziploc bags and stored at 4°C for further processing. One part was used for modified ZN staining, and the remainder for sandwich ELISA.

Modified Ziehl-Neelsen staining (mZN staining)

With the help of a toothpick, faecal smears were prepared on a clean, grease-free glass slide and left to air dry. The air-dried smears were fixed by absolute methanol for 5 minutes, and then these slides were held transiently on a flame and put to cool down. Concentrated carbol fuchsin was poured over the dried smear and allowed to stain for 20-30 minutes. The stained smears were then washed under running tap water. After that, the slides were destained with 1% acid alcohol solution (1% HCl in 70% absolute alcohol) for 15-30 seconds and washed immediately under running tap water. The destained slides were then counterstained with methylene blue for 5 minutes. These slides were washed under running tap water for 5 minutes and kept in a slanting position for air drying. The stained slides were observed under high-power (x40) illumination followed by oil immersion (x100) lens, respectively (Garcia et al., 1983).

The faecal samples were then tested using the sandwich ELISA method with the MonoscreenAg ELISA® kit for detecting *Cryptosporidium* spp., following the instructions provided by the manufacturer.

Results and Discussion:

Currently, multiple techniques exist for the identification of cryptosporidiosis in diverse clinical specimens; however, the method suitable for routine screening of faecal samples from diarrhoeal cases must demonstrate acceptable sensitivity and specificity while delivering clinically pertinent, cost-effective, and prompt results, especially in areas susceptible to waterborne diseases (Mittal et al., 2014). After modified Ziehl-Neelsen staining, the oocysts appeared as bright red stained against a blue background, round to oval structures

containing distinct internal structures (Figure 1). A total of 13 (4.85%) samples were found to be positive by microscopy. Previously a very high prevalence rate, i.e., 20.9%, was found positive for oocysts of *Cryptosporidium* species from West Bengal (Bhanja et al., 2023). *Cryptosporidium* has been shown to be prevalent in dairy cattle worldwide, with a prevalence of 7.1% in cattle in Egypt (Mahfouz et al., 2014), 10.2% in dairy cattle in England and Wales (Smith et al., 2014), and between 10.7% and 41.5% in dairy calves in Brazil, India, France, and Ethiopia (Meireles et al., 2011; Venu et al., 2012; Delafosse et al., 2015; Wegayehu et al., 2016). The low prevalence of *Cryptosporidium* in cattle compared with other studies may be attributed to differences in the methodology used for detection of *Cryptosporidium*, which could partially explain the discrepant results (Inpankaew et al., 2017). Additionally, the overall low prevalence found in this study, compared to other studies from different areas, suggests that cattle might get infected by whatever type of *Cryptosporidium* is available in the specific locations where each study took place.

A coproantigen-based sandwich ELISA revealed 48 (17.91%) faecal samples were found positive for *Cryptosporidium* oocysts. The sandwich ELISA revealed a significantly higher number of *Cryptosporidium* oocysts. All positive samples from the modified acid-fast stain were also positive by sandwich ELISA. Among the two methods employed in the present study, sandwich ELISA was found to be the most sensitive, i.e., 17.91% (48/268), in comparison to modified ZN staining, 4.85% (13/268). This observation was in agreement with the findings of Mirhashemi et al. (2015), clearly highlighting the lack of sensitivity of direct smear examination in detecting *Cryptosporidium* oocysts. Vastert et al. (2025) compared different diagnostic methods for the detection of *C. parvum* in faeces in both acute and chronic diarrhoeic calves and found that the sensitivities of microscopic detection, Crypto-Strip, and ELISA were 37%, 78%, and 71%, respectively. Radfar et al. (2013) concluded that capture ELISA was more efficient than the mZN technique for detecting *C. parvum* in faecal samples. Conversely, Mittal et al. (2014) revealed that stool microscopic modified acid-fast staining exhibits more sensitivity than ELISA for detecting *Cryptosporidium* in stool samples; nevertheless, ELISA demonstrated superior specificity compared to microscopy. A commercially available ELISA kit (Rajkhowa et al., 2006) was satisfactory for detecting cryptosporidiosis in mithun. Recently in Kuwait, Abdou et al. (2022) reported that 15.25% of cattle were suffering from cryptosporidiosis as detected by ELISA. In comparison to the mZN technique, dipstick ELISA kits offered the benefits of reduced time consumption and ease of execution, eliminating the need for an ELISA

microplate reader or other specialist apparatus. The superior performance of sandwich ELISA can be linked to its mechanism of detection, which binds both the capture and detection antibodies to *Cryptosporidium* oocyst antigen. This higher detection rate even at lower antigen concentrations can be attributed to this dual binding of antigens. One probable cause for the contrast in detection rates could be the arbitrariness in oocyst shedding patterns in collected samples. It can be that the quantity of *Cryptosporidium* oocysts shed in some samples might be less than the limit of mZN staining but still within the sensitivity range of sandwich ELISA. The inference of this study is significant concerning upgrading the sensitivity of *Cryptosporidium* diagnosis. The superior sensitivity of sandwich ELISA can be notably useful in patients having low-level infections, thus leading to better management of the morbid populations, earlier medical interventions, and eventually reducing or breaking the transmission cycle of the pathogen.

Conclusion:

This study shows that sandwich ELISA is better than modified ZN (mZN) staining at finding *Cryptosporidium* oocysts. Further surveys could be done to explore the commercial and practical application of sandwich ELISA in a larger clinical population. The study's illations are expected to help better the decision-making in clinical settings, resource allocation, and the expansion of a more effective blueprint for *Cryptosporidium* diagnosis and surveillance, which in turn will provide an upgrade to overall disease control measures and improve public health outcomes.

Conflicts of interest:

Authors declare no conflict of interest for this investigational report.

Ethical approval:

Authors maintained all ethical concern during sample collection and do not require IAEC certificate as it's not experimental.

Contributions:

All the authors equally participated in designing, data analysis and interpreting the results, drafting, editing the manuscript and approved the final version of the manuscript.

Acknowledgments:

The authors duly acknowledge the support and contribution provided by DBT, Govt. of India on 'Establishment of Consortium for One Health to address Zoonotic and Transboundary Diseases in India, including the Northeast Region' vide Order No. BT/PR39032/

ADV/90/ 285 /2020 dated 06-08-2021. The authors acknowledge all the support from the Dean, F/O- VAS, WBUAFS.

References:

Abdou NEMI, AlAzemi MS, Al-Sayegh MT, Majeed QAH. Performance of diagnostic assays used to detect *Cryptosporidium* oocysts in faecal samples of cattle in Kuwait and genotyping of *Cryptosporidium* species. BMC Veterinary Research. 2022; 18: 336 <https://doi.org/10.1186/s12917-022-03435-w>.

Abeywardena H, Jex AR, Gasser, RB. A perspective on *Cryptosporidium* and *Giardia*, with an emphasis on bovines and recent epidemiological findings. Advances in Parasitology. 2015; 88: 243-301.

Amer S, Zidan S, Feng Y, Adamu H, Li N, Xiao L. Identity and public health potential of *Cryptosporidium* spp. in Water Buffalo calves in Egypt. Veterinary Parasitology. 2013; 191(1-2): 123-7.

Ayinmode AB, Fagbemi BO. Prevalence of *Cryptosporidium* infection in cattle from southern Nigeria. Vet Archiv. 2010; 80(6): 723-31.

Bhanja R, Biswas J, Dule S, Pandit S, Jas R, Nandi A, Barua R, Chaudhuri S, Dutta T, Datta S, Batabyal K, Baidya S. Prevalence of *Cryptosporidium* Species Isolated from Calves of Three Districts of West Bengal. Indian Journal of Veterinary Public Health. 2023; 9(3): 70-2. DOI: <https://doi.org/10.62418/ijvph.9.3.2023.70-72>.

Bhat SA, Juyal PD, Singh NK, Singla LD. Coprological investigation on neonatal bovine cryptosporidiosis in Ludhiana, Punjab. Journal of Parasitology Disease, 2013; 37(1): 114-17.

CDC. 2025. About Crypto Infections. Available at: <https://www.cdc.gov/cryptosporidium/about/index.html#:~:text=Cryptosporidiosis%20is%20a%20disease%20that,been%20contaminated%20with%20infected%20poop> [27th May, 2025]

Chalmers RM, Ferguson C, Cacciò S, Gasser RB, El-Osta YGA, Heijnen L, ... Stevens M. Direct comparison of selected methods for genetic categorisation of *Cryptosporidium parvum* and *Cryptosporidium hominis* species. International Journal for Parasitology. 2005; 35(4): 397-410.

Cho YI, Sun D, Cooper V, Dewell G, Schwartz K, Yoon KJ. Evaluation of a commercial rapid test kit for detecting bovine enteric pathogens in feces. J. Vet. Diagnos Inv. 2012; 24(3): 559-62.

Delafosse A, Chartier C, Dupuy MC, Dumoulin M, Pors I, Paraud C. *Cryptosporidium parvum* infection and

associated risk factors in dairy calves in western France. *Prev. Vet. Med.* 2015; 118: 406–12. <https://doi.org/10.1016/j.prevetmed.2015.01.005>

Dubey JP, Fayer R, Rao JR. *Cryptosporidium* oocysts in faeces of water buffalo and zebu calves in India. *Journal of Veterinary Parasitology*. 1992; 6: 55-6.

Fayer R, Ungar BL. *Cryptosporidium* spp. and cryptosporidiosis. *Microbiological reviews*. 1986; 50(4): 458-83.

Galuppi R, Piva S, Castagnetti, C, Sarli G, Iacono E, Fioravanti ML, Caffara M. *Cryptosporidium parvum*: From foal to veterinary students. *Veterinary Parasitology*. 2016; 219: 53-6.

Garcia LS, Bruckner DA, Brewer TC, Shimizu RY. Techniques for the recovery and identification of *Cryptosporidium* oocysts from stool specimens. *Journal of Clinical Microbiology*. 1983; 18: 185-90.

Hawash Y, Ghonaim MM, Al-Hazmi AS. Internal amplification control for a cryptosporidium diagnostic PCR: construction and clinical evaluation. *Korean Journal of Parasitology*. 2015; 53(2): 147-54.

Inpankaew T, Jiyipong T, Sunanta C, Kengradomkij C, Pinyopanuwat N, Jittapalapong S. Prevalence and molecular characterisation of bovine *Cryptosporidium* from dairy cows in Northern Thailand. *Acta Parasitologica*. 2017; 62(4): 772-4.

Kaupke A, Rzezutka A. Emergence of novel subtypes of *Cryptosporidium parvum* in calves in Poland. *Parasitology Research*. 2015; 114(12): 4709-16. DOI: 10.1007/s00436-015-4719-1

Kiang KM, Scheftel JM, Leano FT, Taylor CM, Belle-Isle PA, Cebelinski EA, et al. Recurrent outbreaks of cryptosporidiosis associated with calves among students at an educational farm programme, Minnesota, 2003. *Epidemiology & Infection*. 2006; 134(4): 878-86.

Kumar D, Sreekrishnan R, Das SS. Cryptosporidiosis in man and animals in Pondicherry. *Indian Journal of Animal Science*. 2004; 74: 261-3.

Mahfouz M, Mira N, Amer S. Prevalence and genotyping of *Cryptosporidium* spp. in farm animals in Egypt. *The Journal of Veterinary Medical Science*. 2014; 76(12): 1569-75.

Meireles MV, Oliveira FPde, Teixeira WFP, Coelho WMD, Mendes LCN. Molecular characterization of *Cryptosporidium* spp. In dairy calves from the state of São Paulo, Brazil. *Parasitology Research*. 2011; 109(3): 949-51. doi: 10.1007/s00436-011-2336-1. Epub 2011 Apr 7.

Meisel JL, Perera DR, Meligro C, Rubin CE. Overwhelming watery diarrhea associated with a *Cryptosporidium* in an immunosuppressed patient. *Gastroenterology*. 1976; 70(6): 1156-60.

Mirhashemi ME, Zintl A, Grant T, Lucy, FE, Mulcahy G, Waal TD. Comparison of diagnostic techniques for the detection of *Cryptosporidium* oocysts in animal samples. *Experimental Parasitology*. 2015; 151-152: 14-20.

Mittal S, Sharma M, Chaudhary U, Yadav A. Comparison of ELISA and Microscopy for detection of *Cryptosporidium* in stool. *Journal of Clinical and Diagnostic Research*. 2014; 8(11): DC07-8. DOI: 10.7860/JCDR/2014/9713.5088

Nime FA, Burek JD, Page DL, Holscher MA, Yardley JH. Acute enterocolitis in a human being infected with the protozoan *Cryptosporidium*. *Gastroenterology*. 1976; 70(4): 592-8.

Office International des Epizooties (OIE). *Cryptosporidiosis*. In: *Terrestrial manual chapter 2.9.4*, 2008; pp 1192-215.

Olson ME, Thorlakson CL, Deselliers L, Morck DW, McAllister TA. *Giardia* and *Cryptosporidium* in Canadian farm animals. *Veterinary Parasitology*. 2004; 68: 375-81.

Preiser G, Preiser L, Madeo L. An outbreak of cryptosporidiosis among veterinary science students who work with calves. *Journal of American College Health*. 2003; 51(5): 213-5.

Qi M, Wang H, Jing B, Wang D, Wang R, Zhang L. Occurrence and molecular identification of *Cryptosporidium* spp. in dairy calves in Xinjiang, Northwestern China. *Veterinary Parasitology*. 2015; 212(3-4): 404-7. <https://doi.org/10.1016/j.vetpar.2015.07.002>.

Radfar M, Gowhari MA, Khalili M. Comparison of capture ELISA and modified Ziehl-Neelsen for detection of *Cryptosporidium parvum* in feces of camel (*Camelus dromedarius*) in Iran. *Scientia Parasitologica*. 2013; 14(3):147-52.

Rajkhowa S, Rajkhowa C, Hazarika GC. Prevalence of *Cryptosporidium parvum* in mithuns (*Bos frontalis*) from India. *Veterinary Parasitology*. 2006; 142(1-2): 146-9.

Rekha HKM, Puttalakshmamma GC, D'souza PE. Comparison of different diagnostic techniques for the detection of cryptosporidiosis in bovines. *Veterinary World*. 2016; 9(2): 211-5.

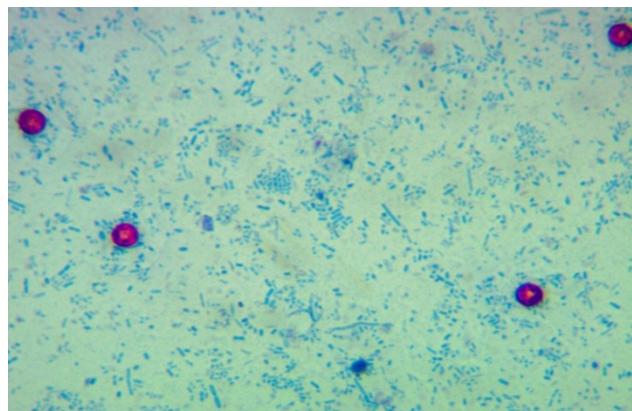
Romero-Salas D, Alvarado-Esquivel C, Cruz-Romero A, Aguilar-Domínguez M, Ibarra-Priego N, Merino-

Charrez JO, Pérez de León AA, Hernández-Tinoco J. Prevalence of *Cryptosporidium* in small ruminants from Veracruz, Mexico. *BMC Veterinary Research*. 2016; 12: 14. doi: 10.1186/s12917-016-0638-3.

Roy SS, Saankar S, Batabyal S, Pramanik AK, Das P. Observations on the epidemiology of bovine cryptosporidiosis in India. *Veterinary Parasitology*. 2006; 141: 330-3.

Smith KE, Stenzel SA, Bender JB, Wagstrom E, Soderlund D, Leano FT, Danila R. Outbreaks of enteric infections caused by multiple pathogens associated with calves at a farm day camp. *The Pediatric Infectious Disease Journal*. 2004; 23(12): 1098-104.

Smith RP, Clifton-Hadley FA, Cheney T, Giles M. Prevalence and molecular typing of *Cryptosporidium* in dairy cattle in England and Wales and examination of potential on-farm transmission routes. *Veterinary Parasitology*. 2014; 204:111-9.


Tyzzer EE. A sporozoan found in the peptic glands of the common mouse. *Proceedings of the Society for Experimental Biology and Medicine*. 1907; 5(1): 12-3.

Vastert D, Brinkman M, Wilke H, Mulder B. 2025. Diagnosis of *Cryptosporidium parvum* with microscopy, striptest, ELISA and realtime PCR. Available at <https://www.corisbio.com/pdf/Science/DUO-Cryptosporidium/Diagnosis%20of%20Cryptosporidium%20with%20microscopy.pdf#:~:text=The%20sensitivities%20of%20microscopic%20detection%2C%20Crypto%2Dstrip%20and,three%20methods%20were%20never%20lower%20than%2098%25>. [11th July, 2025]

Venu R, Latha BR, Basith S Abdul, Raj G Dhinakar, Sreekumar C, et al. Molecular prevalence of *Cryptosporidium* spp. in dairy calves in Southern states of India. *Veterinary Parasitology*. 2012; 188 (1-2): 19–24. doi: 10.1016/j.vetpar.2012.02.025.

Wegayehu T, Karim R, Anberber M, Adamu H, Erko B, Zhang L, Tilahun G. Prevalence and Genetic Characterization of *Cryptosporidium* Species in Dairy Calves in Central Ethiopia. *PLoS ONE*. 2016; 11(5): e0154647. <https://doi.org/10.1371/journal.pone.0154647>.

Xiao L, Feng Y. Zoonotic cryptosporidiosis. *FEMS Immunology & Medical Microbiology*. 2008; 52(3): 309-23.

Figure 1: Microscopic view of *Cryptosporidium* oocysts in modified Z-N stain under (x100)

***Corresponding author's email ID:** drrahul469@gmail.com

Citation: Chowdhury S, Barua R, Debnath C, Biswas R, Baidya S, Bhanja R, Chaudhuri S, Batabyal K, Pradhan S, Raj A, Dutta TK. Comparative Evaluation of Modified ZN Staining and Sandwich ELISA Based Detection of *Cryptosporidium* spp. Isolated from Cattle and Buffalo Calves in and around Kolkata. *Indian Journal of Veterinary Public Health*. 2025; 11(2): 53-57.

DOI: <https://www.doi.org/10.62418/ijvph.11.2.2025.53-57>